Spectral Equivalence of A_s -Scalar Operators. A_s -Decomposable and A_s -Spectral Operators

Cristina Şerbănescu and Ioan Bacalu Faculty of Applied Sciences, University Politehnica of Bucharest, Romania

Abstract: This paper is dedicated to the study of some properties of the operators which admit residually non-analytic functional calculus initiated in [16]. We shall also define and study the spectral *s*-capacities, and give several *s*-decomposability criteria. We shall further study the restrictions and the *S*-decomposable operators' quotients.

The concepts of \mathcal{A}_S -spectral function, respectively \mathcal{A}_S -decomposable and \mathcal{A}_S -spectral operators are introduced and characterized here and several elementary properties concerning them are studied. These operators are natural generalizations of the notions of \mathcal{A} -scalar, \mathcal{A} -decomposable and \mathcal{A} -spectral operators studied in [8] and appear, in generally, as restrictions or quotients of the last one.

M.S.C. 2000: 47B47, 47B40.

Keywords: \mathcal{A} -spectral (\mathcal{A}_S -spectral) function; \mathcal{A} -scalar (\mathcal{A}_S -scalar); \mathcal{A} -decomposable (\mathcal{A}_S -decomposable); \mathcal{A} -spectral (\mathcal{A}_S -spectral); restrictions and quotients of operators.

1. INTRODUCTION

Let X be a Banach space, let $\mathbf{B}(X)$ be the algebra of all linear bounded operators on X and let \mathbb{C} be the complex plane. If $T \in \mathbf{B}(X)$ and $Y \subset X$ is a (closed) invariant subspace to T, let us denote by T | Y the restriction of T to Y, respectively by \dot{T} the operator induced by T in the quotient space $\dot{X} = X / Y$. In what follows, by subspace of X we understand a closed linear manifold of X. Recall that Y is a *spectral maximal space* of T if it is an invariant subspace such that for any other subspace $Z \subset X$ also invariant to T, the inclusion $\sigma(T|Z) \subset \sigma(T|Y)$ implies $Z \subset Y$ ([8]). A family of open sets $G_S \cup \{G_i\}_{i=1}^n$ is an S-covering of the closed set

$$\sigma \subset \mathbb{C} \text{ if } G_S \cup \left(\bigcup_{i=1}^n G_i \right) \supset \sigma \cup S \text{ and } \overline{G}_i \cap S = \emptyset$$

(i=1,2,...,n) (where $S \subset \mathbb{C}$ is also closed) ([14]).

The operator $T \in \mathbf{B}(X)$ is Sdecomposable (where $S \subset \sigma(T)$ is compact) if for any finite open S-covering $G_S \cup \{G_i\}_{i=1}^n$ of $\sigma(T)$, there is a system $Y_S \cup \{Y_i\}_{i=1}^n$ of spectral maximal spaces of T such that $\sigma(T | Y_S) \subset G_S$,

$$\sigma(T | Y_i) \subset G_i(i = 1, 2, ..., n) \text{ and } X = Y_S + \sum_{i=1}^n Y_i$$

([4]). If dim S = 0, then $S = \emptyset$ and T is decomposable ([8]). An open set $\Omega \subset \mathbb{C}$ is said to be a set of analytic uniqueness for $T \in \mathbf{B}(X)$ if for any open set $\omega \subset \Omega$ and any analytic function $f_0: \omega \to X$ satisfying the equation $(\lambda I - T) f_0(\lambda) \equiv 0$ it follows that $f_0(\lambda) \equiv 0$ in ω ([14]). For $T \in \mathbf{B}(X)$ there is a unique maximal open set Ω_T of analytic uniqueness ([14]). We shall denote by $S_T = \mathcal{C} \Omega_T = \mathbb{C} \setminus \Omega_T$ and call it the analytic spectral residuum of T. For $x \in X$, a point λ is in $\delta_T(x)$ if in a neighborhood V_{λ} of λ , there is at least an analytic X-valued function f_x (called Tassociated to x) such that $(\mu I - T) f_x(\mu) \equiv x$, for $\mu \in V_{\lambda}$. We shall put $\gamma_T(x) = \mathbb{C}\delta_T(x) = \mathbb{C} \setminus \delta_T(x), \ \rho_T(x) = \delta_T(x) \cap \Omega_T$ $\sigma_T(x) = \mathcal{C} \rho_T(x) = \mathbb{C} \setminus \rho_T(x) = \gamma_T(x) \cup S_T$ and $X_T(F) = \{x \in X; \sigma_T(x) \subset F\}$

where $S_T \subset F \subset \mathbb{C}$ ([14], [15]).

An operator $T \in \mathbf{B}(X)$ is said to have the single-valued extension property if for any analytic function $f: \omega \to X$ (where $\omega \subset \mathbb{C}$ is an open set), with $(\lambda I - T) f(\lambda) = 0$, it follows that $f(\lambda) \equiv 0$ ([10]). T has the single-valued extension property if and only if $S_T = \emptyset$; then we have $\sigma_T(x) = \gamma_T(x)$ and there is in $\rho_T(x) = \delta_T(x)$ a unique analytic function $x(\lambda)$, T-associated to x, for any $x \in X$. We shall recall that if $T \in \mathbf{B}(X)$, $S_T \neq \emptyset$, $S_T \subset F$ and $X_T(F)$ is closed, for $F \subset \mathbb{C}$ closed, then $X_T(F)$ is a spectral maximal space of T ([14]).

We say that two operators $T_1, T_2 \in \mathbf{B}(X)$ are *quasinilpotent equivalent* if

$$\lim_{n \to \infty} \left\| (T_1 - T_2)^{[n]} \right\|^{\frac{1}{n}} = \lim_{n \to \infty} \left\| (T_2 - T_1)^{[n]} \right\|^{\frac{1}{n}} = 0$$

where

$$(T_1 - T_2)^{[n]} = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} T_1^k T_2^{n-k}$$
([8]).

Definition 1.1. ([16]) Let Ω be a set of the complex plane \mathbb{C} and let $S \subset \overline{\Omega}$ be a compact subset. An algebra \mathcal{A}_S of \mathbb{C} -valued functions defined on Ω is called *S*-normal if for any finite open *S*-covering $G_S \cup \{G_i\}_{i=1}^n$ of $\overline{\Omega}$, there are the functions, f_S , $f_i \in \mathcal{A}_S$ $(1 \le i \le n)$ such that:

1) $f_S(\Omega) \subset [0, 1], f_i(\Omega) \subset [0, 1]$

 $(1 \le i \le n);$

2) supp
$$(f_S) \subset G_S$$
, supp $(f_i) \subset G_i$
 $(1 \le i \le n)$;

3)
$$f_S + \sum_{i=1}^n f_i = 1$$
 on Ω

where the support of $f \in \mathcal{A}_S$ is defined as: $\sup(f) = \overline{\{\mu \in \Omega; f(\mu) \neq 0\}}.$

Definition 1.2. ([16]) An algebra \mathcal{A}_S of \mathbb{C} -valued functions defined on Ω is called *S*-*admissible* if:

1) $\lambda \in \mathcal{A}_S$, $1 \in \mathcal{A}_S$ (where λ and 1 denote the functions $f(\lambda) = \lambda$ and $f(\lambda) = 1$);

2)
$$\mathcal{A}_S$$
 is S-normal;

3) for any $f \in \mathcal{A}_S$ and any $\xi \notin \text{supp}(f)$, the function

$$f_{\xi}(\lambda) = \begin{cases} \frac{f(\lambda)}{\xi - \lambda}, & \text{for } \lambda \in \Omega \setminus \{\xi\} \\ 0, & \text{for } \lambda \in \Omega \cap \{\xi\} \end{cases}$$

belongs to \mathcal{A}_S .

Definition 1.3. ([16]) An operator $T \in \mathbf{B}(X)$ is said to be \mathcal{A}_S -scalar if there are an Sadmissible algebra \mathcal{A}_S and an algebraic homomorphism $U: \mathcal{A}_S \to \mathbf{B}(X)$ such that $U_1 = I$ and $U_{\lambda} = T$ (where 1 is the function $f(\lambda) = 1$ and λ is the function $f(\lambda) = \lambda$). The mapping U is called \mathcal{A}_S -spectral homomorphism (\mathcal{A}_S -spectral function or \mathcal{A}_S functional calculus) for T.

If $S = \emptyset$, then we put $\mathcal{A} = \mathcal{A}_{\emptyset}$ and we obtain an \mathcal{A} -spectral function and an \mathcal{A} -scalar operator ([8]).

The support of an \mathcal{A}_S -spectral function U is denoted by $\operatorname{supp}(U)$ and it is defined as the smallest closed set $F \subset \overline{\Omega}$ such that $U_f = 0$ for $f \in \mathcal{A}_S$ with $\operatorname{supp}(f) \cap F = \emptyset$.

A subspace *Y* of *X* is said to be invariant with respect to an \mathcal{A}_S -spectral function $U : \mathcal{A}_S \to \mathbf{B}(X)$ if $U_f Y \subseteq Y$, for any $f \in \mathcal{A}_S$.

We recall several important properties of an \mathcal{A} -spectral function U ([8]), because we want to obtain similar properties for an \mathcal{A}_S spectral function:

1. U_{λ} has the single-valued extension property, where λ is the identical function $f(\lambda) \equiv \lambda$;

$$2. \sigma_{U_{\lambda}} \left(U_{f} x \right) \subset \operatorname{supp}(f), \text{for any } f \in \mathcal{A}$$

and $x \in X$;

3.If $\sigma_{U_{\lambda}}(x) \cap \operatorname{supp}(f) = \emptyset$, then $U_{f}(x) = 0$, for any $f \in \mathcal{A}$ and $x \in X$; $4.x \in X_{U_{\lambda}}(F) = \left\{ x \in X; \sigma_{U_{\lambda}}(x) \subset F \right\}$ $\Leftrightarrow U_f(x) = 0$, for any $f \in \mathcal{A}$ with property supp $(f) \cap F = \emptyset$, $F \subset \Omega$ closed;

> 5. supp $(U) = \sigma(U_{\lambda});$ 6. U_{λ} is decomposable.

Theorem 1.4. Let $T \in \mathbf{B}(X)$ be an \mathcal{A}_S -scalar operator and let U be an \mathcal{A}_S -spectral function for T. Then we have:

supp $(U) \subset \sigma(T) \cup S$ and $\sigma(T) \subset \text{supp}(U) \cup S$. *Proof.* Let us consider $f \in \mathcal{A}_S$ such that $\text{supp}(f) \cap (\sigma(T) \cup S) = \emptyset$. If $\xi \notin \text{supp}(f)$ and λ

is the identical function $f(\lambda) = \lambda$, then we have

$$\left(\xi I - U_{\lambda}\right) U_{f_{\xi}} = U_{\left(\xi - \lambda\right) f_{\xi}} = U_{f}$$

hence

$$U_{f_{\xi}} = \Re(\xi, U_{\lambda}) U_{f}, \text{ for}$$

$$\xi \in \rho(U_{\lambda}) \cap \mathbb{C} \operatorname{supp}(f).$$

The function

$$F(\xi) = \begin{cases} \Re(\xi, T) U_f, \text{ for } \xi \in \rho(U_{\lambda}) \\ U_{f_{\xi}}, & \text{ for } \xi \in \mathsf{C} \operatorname{supp}(f) \end{cases}$$

is entire and $\lim_{|\xi| \to \infty} ||F(\xi)|| = 0$, therefore F = 0. It follows that U = 0 on form (f) and

It follows that $U_{f_{\xi}} = 0$ on $C \operatorname{supp}(f)$ and $U_{f} = 0$, hence

 $\operatorname{supp}(U) \subset \sigma(T) \cup S$.

Let now $\xi_0 \notin \operatorname{supp}(U) \cup S$, let V_{ξ_0} be an open neighborhood of ξ_0 and let W be an open neighborhood of $\operatorname{supp}(U) \cup S$ such that $V_{\xi_0} \cap W = \emptyset$. Because the algebra \mathcal{A}_S is S-normal, then there is a function $f \in \mathcal{A}_S$ with $f(\mu) = 1$ on W and $f(\mu) = 0$ for $\mu \in V_{\xi_0}$. Consequently

 $\operatorname{supp}(1-f)\cap(\operatorname{supp}(U)\cup S)=\emptyset$

hence

$$U_{1-f} = 0$$
, i.e. $U_f = I$

Whence

$$U_{f_{\xi_0}}\left(\xi_0 I - U_{\lambda}\right) = \left(\xi_0 I - U_{\lambda}\right) U_{f_{\xi_0}} = U_f = I$$

therefore we finally have $\xi_0 \notin \sigma(U_\lambda) = \sigma(T)$ and hence $\sigma(T) \subset \operatorname{supp}(U) \cup S$.

Theorem 1.5. (Properties of \mathcal{A}_S -spectral functions)

Let U be an \mathcal{A}_S -spectral function (particularly, U is an \mathcal{A}_S -spectral function for an \mathcal{A}_S -scalar operator $T \in \mathbf{B}(X)$, $T = U_{\lambda}$). Then we have the following properties:

(1) The spectral analytic residuum S_T has the property: $S_T \subset S$; when $S_T = \emptyset$ (particularly, $S = \emptyset$), then T has the single-valued extension property;

(2) If $(\lambda_0 I - U_\lambda) x_0 = 0$, with $x_0 \neq 0$ and $f \in \mathcal{A}_S$ with $f(\lambda) = c$, for $\lambda \in G \cap \Omega$, where G is a neighborhood of λ_0 , then $U_f x_0 = c x_0$;

(3) If $f \in \mathcal{A}_S$ and $x \in X$, then $\gamma_T (U_f x) \subset \operatorname{supp}(f);$ moreover, if $\operatorname{supp}(f) \supset S$, then $\sigma_T (U_f x) \subset \operatorname{supp}(f);$

(4) If $f \in \mathcal{A}_S$ such that $\sigma_{U_\lambda}(x) \cap \operatorname{supp}(f) = \emptyset$ and $S_T = \emptyset$, then $U_f x = 0$;

(5) If $F \subset \Omega$ closed, with $F \supset S$, $x \in X$ and $S_T = \emptyset$, then $x \in X_{U_\lambda}(F)$ if and only if $U_f x = 0$, for any $f \in \mathcal{A}_S$ with the property $\operatorname{supp}(f) \cap F = \emptyset$;

(6) U_{λ} is S-decomposable.

Proof. The assertions (1) and (2) are proved in [16], Theorem 3.2, respectively Lemma 3.1. (3) We observe that for any $\xi \notin \operatorname{supp}(f)$ we have $f_{\xi} \in \mathcal{A}_S$ and the *X*-valued function $\xi \to U_{f_{\xi}} x$ is analytic. Consequently,

$$\left(\xi I - T\right) U_{f_{\xi}} x = \left(\xi I - U_{\lambda}\right) U_{f_{\xi}} x = U_{f} x,$$

therefore $\xi \in \delta_T (U_f x)$, hence

$$\gamma_T (U_f x) \subset \operatorname{supp}(f)$$
.

Furthermore, for $f \in \mathcal{A}_S$ with $\operatorname{supp}(f) \supset S$, we deduce

$$\sigma_T (U_f x) = S_T \cup \gamma_T (U_f x)$$

$$\subset S \cup \gamma_T (U_f x) \subset \operatorname{supp}(f).$$

(4) Let $x(\xi)$ be the unique analytic X -valued function defined on $\rho_{U_{\lambda}}(x)$ which satisfies the equality

$$(\xi I - U_{\lambda})x(\xi) = x \text{ on } \rho_{U_{\lambda}}(x).$$

It results that

$$(\xi I - U_{\lambda}) U_{f} x(\xi) = U_{f} (\xi I - U_{\lambda}) x(\xi) = U_{f} x$$

on $\rho_{U_{\lambda}}(x)$

hence the following inclusions are obtained

$$\rho_{U_{\lambda}}(x) \subset \rho_{U_{\lambda}}(U_{f}x) \text{ and}$$
$$\sigma_{U_{\lambda}}(U_{f}x) \subset \sigma_{U_{\lambda}}(x).$$
From assertion (3),

$$\sigma_{U_{\lambda}}(U_{f}x) = \sigma_{T}(U_{f}x) = S_{T} \cup \gamma_{T}(U_{f}x)$$
$$= \gamma_{T}(U_{f}x) \subset \operatorname{supp}(f),$$

hence

$$\sigma_{U_{\lambda}}(U_f x) \subset \operatorname{supp}(f) \cap \sigma_{U_{\lambda}}(x) = \emptyset,$$

therefore according to Proposition 1.1.2, [8], it follows that $U_f x = 0$.

The property (5) can be obtained by using (4), as in the proof of Proposition 3.1.17, [8] and will be omitted.

The proof of (6) is presented in [14], Theorem 3.3.

Lemma 1.6. Let U be an \mathcal{A}_S -spectral function. If G_1 is an open neighborhood of $\operatorname{supp}(U)$, $G_1 \supset \operatorname{supp}(U)$ and G_2 is an open set such that $G_1 \cup G_2 \supset \overline{\Omega}$, $G_2 \cap \operatorname{supp}(U) = \emptyset$ (i.e. $\{G_1, G_2\}$ is an open covering of $\overline{\Omega}$), then by S-normality

of the algebra \mathcal{A}_S it results that there are tow functions $f_1, f_2 \in \mathcal{A}_S$ such that:

$$0 \le f_1(\lambda) \le 1, \ 0 \le f_2(\lambda) \le 1, \ \lambda \in \Omega,$$

supp $(f_1) \subset G_1$, supp $(f_2) \subset G_2$ and
 $f_1 + f_2 = 1 \text{ on } \Omega.$
With these conditions we have:
a) $U_{f_1} = I, \ U_{f_2} = 0$

b) For $f \in A_S$ having the property that f = 1 on a neighborhood of supp(U), it results that $U_f = I$.

Proof. We have

$$\sup (1 - f_1) = \sup (f_2) \subset G_2$$

$$\sup (1 - f_1) \cap \sup (U) = \emptyset$$

hence

therefore

$$U_{f_1} = U_1 = I$$
 and $U_{f_2} = 0$.

 $0 = U_{1-f_1} = U_1 - U_{f_1}$

Moreover, for $f \in \mathcal{A}_S$ with the property that f = 1 on a neighborhood of supp(U) we have

$$U_f = I$$

because it can be chosen in this case: $f_1 = f$, $f_2 = g$, with $\operatorname{supp}(g) \cap \operatorname{supp}(U) = \emptyset$, hence $U_g = 0$ and accordingly

$$U_{f+g} = U_1 = I = U_f + U_g$$
, whence $U_f = I$.

Remark 1.7. From Lemma 1.6, it results that if $f \in \mathcal{A}_S$ and f = 1 in a neighborhood of $\operatorname{supp}(U)$, then $U_f = I$. If we denote by $\bigvee_{f \in \mathcal{A}_0} U_f Y$ the linear subspace of X generated

by $U_f Y$, where $Y \subset X$ and \mathcal{A}_0 is the set of all functions in \mathcal{A}_S with compact support, then we have:

$$\bigvee_{f\in\mathcal{A}_0} U_f X = X \; .$$

Definition 1.8. Let *U* be an \mathcal{A}_S -spectral function. For any open set $G \in \mathcal{G}_S$ we denote

$$X_{[U]}(G) = \bigvee_{\operatorname{supp}(f) \subset G} U_f X$$

and for any closed set $F \in \mathcal{F}_S$ we put

$$X_{[U]}(F) = \bigcap_{G \supset F} X_{[U]}(G).$$

where \mathcal{F}_S (respectively, \mathcal{G}_S) is the family of all closed (respectively, open) subsets $F \subset \mathbb{C}$ (respectively, $G \subset \mathbb{C}$) having the property: either $F \cap S = \emptyset$ or $F \supset S$ (respectively, $G \cap S = \emptyset$ or $G \supset S$).

Theorem 1.9. Let U be an A_S -spectral function. Then

$$\begin{split} X_{\left[U\right]}(F) &= X_{U_{\lambda}}(F) = \left\{ x \in X; \, \sigma_{U_{\lambda}}(x) \subset F \right\}, for \\ F &\in \mathcal{F}_{S}, \, F \supset S \,. \end{split}$$

Proof. If $\sigma_{U_{\lambda}}(x) \subset F$, for $F \in \mathcal{F}_S$, with $F \supset S$, let us consider $G \in \mathcal{G}_S$ an open set with $G \supset F \supset S$. Then by *S*-normality of \mathcal{A}_S there is a function $f \in \mathcal{A}_S$ such that

 $f(\xi) = \begin{cases} 1, \text{ for } \xi \text{ in a neighborhood of } \Omega \cap F \\ 0, \text{ for } \xi \text{ in a neighborhood of } \Omega \setminus (G \cap \Omega) \end{cases}$

and therefore $\operatorname{supp}(f) \subset G$, whence

 $\sup(1-f) \cap \sigma_{U_{\lambda}}(x) \subset \sup(1-f) \cap F = \emptyset.$ According to Theorem 1.5, $U_{1-f} x = 0$,

hence

$$x = U_f \ x \in X_{[U]}(G).$$

 $G \in G_S$ being an arbitrary open set with $G \supset F, F \in \mathcal{F}_S$, we have

$$x \in X_{[U]}(F)$$
, i.e. $X_{U_{\lambda}}(F) \subseteq X_{[U]}(F)$.

Conversely, let us show that $X_{[U]}(F) \subset X_{U_{\lambda}}(F)$, for any $F \in \mathcal{F}_S$, $F \supset S$.

Let $x \in X_{[U]}(F) \subset X_{[U]}(G)$, for any open set $G \in G_S$, $G \supset F \supset S$, and let $G_1 \in G_S$ be an arbitrary open set containing \overline{G} . By *S*normality of \mathcal{A}_S , there is a function $f_1 \in \mathcal{A}_S$ such that

$$f_1(\xi) = \begin{cases} 1, \text{ for } \xi \in \overline{G} \cap \Omega \\ 0, \text{ for } \xi \in \Omega \setminus (G_1 \cap \Omega) \end{cases}$$

hence $\operatorname{supp}(f_1) \subset \overline{G}_1$. Therefore for any $f \in \mathcal{A}_S$ with $\operatorname{supp}(f) \subset G$ we have $f_1 f = f$, so that

$$U_{f_1}U_f = U_f, \text{ i.e.}$$
$$U_{f_1} \mid X_{[U]}(G) = I \mid X_{[U]}(G)$$

whence

$$U_{f_1} x = x$$
.

According to Theorem 1.5 it follows that $\sigma_{U_{\lambda}}(x) = \sigma_{U_{\lambda}}(U_{f_{1}}x) = \gamma_{U_{\lambda}}(U_{f_{1}}x) \cup S_{U_{\lambda}} = \gamma_{U_{\lambda}}$

and hence

$$\sigma_{U_{\lambda}}(x) = \bigcap_{\substack{G_1 \in \mathcal{G}_s \\ G_1 \supset \overline{G}}} \overline{G}_1 = \overline{G}.$$

 $G \in G_S$ being an arbitrary open set, $G \supset F \supset S$, we obtain

$$\sigma_{U_{\lambda}}(x) \subset \bigcap_{\substack{G \in \mathcal{G}_{S} \\ G \supset F \supset S}} \overline{G} = F \text{, hence } x \in X_{U_{\lambda}}(F).$$

Corollary 1.10. If U is an \mathcal{A}_S -spectral function, then for any $F \in \mathcal{F}_S$ with $F \supset S$, $X_{[U]}(F)$ is a maximal spectral space for U_λ .

Proof. It results easily from the previous theorem.

Theorem 1.11. Let $T_1, T_2 \in \mathbf{B}(X)$. If T_1 is S-decomposable (in particular, decomposable) and T_1, T_2 are spectral equivalent, then T_2 is also S-decomposable (in particular, decomposable) and and

$$X_{T_1}(F) = X_{T_2}(F),$$

for any $F \subset \mathbb{C}$ closed, $F \supset S$ (when $S = \emptyset$, for any $F \subset \mathbb{C}$ closed).

If T_1 and T_2 are decomposable, then T_1 is spectral equivalent to T_2 if and only if their spectral spaces $X_{T_1}(F)$ and $X_{T_2}(F)$ are equal, i.e. $X_{T_1}(F) = X_{T_2}(F)$, for any $F \subset \mathbb{C}$ closed ([8], 2.2.1, 2.2.2).

If T_1 and T_2 are *S*-decomposable and spectral equivalent, then their spectral spaces are equal, i.e. $X_{T_1}(F) = X_{T_2}(F)$, for any $F \subset \mathbb{C}$ closed, $F \supset S$, but conversely is not true.

2. THE STRUCTURE OF SPECTRAL MAXIMAL SPACES OF S-DECOMPOSABLE OPERATORS

This paragraph is devoted to the study of the S-decomposable operators defined in the introduction (see [6], [7]). First, we reveal some structural properties of spectral maximal spaces of the S-decomposable operators. Then, we shall (presen) The performing of these operators at direct sums, at projections, at separate parts of the spectrum, at the Riesz-Dunfort functional calculus and at the quasinilpotent equivalence. We will also give proof of an important structural theorem of spectral maximal spaces, generalising the following from [11] and [12]. **LEMMA** 2.1. Let $T \in B(X)$ be a Sdecomposable operator, and let G be an open set such that:

$$G \cap (\sigma(T) \setminus S) = \emptyset$$

then there exists a maximal spectral space $Y \neq \{0\}$ of T such that $\sigma(T/Y) \subset G$. If dim $S \leq 1$ and $G \cap \operatorname{Int} \sigma(T) \neq \emptyset$ (G being an open set), then there exists a maximal spectral space $Y \neq \{0\}$ of T such that $\sigma(T/Y) \subset G$.

Proof. Let
$$G_s$$
 be an open set such that:
 $S \subset G_s \not\supset \sigma(T)$

and

$$G_s \cup G \supset \sigma(T).$$

T being S-decomposable, there exists a system of spectral maximal spaces Y_s , Y from T such that:

$$\sigma(T \mid Y_s) \subset G_s, \ \sigma(T \mid Y) \subset G$$

and

$$X = X_{s} + Y.$$

If $Y = \{0\}$, we have $Y_s = X$ and $\sigma(T | Y_s) = \sigma(T) \subset G_s$, contradiction, hence $Y \neq \{0\}$. When dim $S \leq 1$ and $G \cap \operatorname{Int} \sigma(T) \neq \emptyset$ it follows that $G \cap (\sigma(T | Y) \setminus S) \neq \emptyset$, consequently $Y \neq \{0\}$.

THEOREM 2.2.. If $T \in B(X)$ is Sdecomposable where dim $S \leq 1$, then

 $\sigma_p^0(T) = \sigma_r^0(T) = \emptyset$ (see [8], Theorem 1.3.6),

T has the single-valued extension property $(S_T = \emptyset)$ and $\sigma(T) = \sigma_1(T)$. If $S_T \neq \emptyset$, then $S_T \subset S$ and dim S = 2.

Proof. If $\sigma_p^0(T) = \emptyset$, let *G* be a component of $\sigma_p^0(T)$. Then, by [37] Proposition 1.3.7, there doesn't exist any spectral maximal space $Y \neq \{0\}$ of T such that

$$\mathfrak{s}(T \mid Y) \subset G;$$

by the preceding lemma, $G \cap \sigma(T) = \emptyset$, therefore $G \cap \sigma_p^0(T) = \emptyset$ which is impossible (since $G \subset \sigma_p^0(T) \subset \operatorname{Int} \sigma(T)$). Same for $\sigma_r(T)$. Consequently

$$\sigma_p^0(T) = \sigma_r^0(T) = \emptyset$$

since $S_T = \overline{\sigma_p^0(T)}$, and $\sigma_r^0(T) = \sigma(T) \setminus \sigma_t(T)$, we have $S_T = \emptyset$ (meaning that *T* has the singlevalued extension property) and

$$\sigma(T) = \sigma_l(T).$$

Now let $S_T \neq \emptyset$. In order to verify the inclusion $S_T \subset S$ it will suffice to verify that $\sigma_p^0(T) \subset S$. Suppose that $\sigma_p^0(T) \not\subset S$; then there exists a component G_0 of $\sigma_p^0(T)$ such that:

$$G_0 \not\subset S$$
 and $G_0 \cap (\sigma(T) \setminus S) \neq \emptyset$.

By the preceding lemma there follows that there exists a spectral maximal space Y_0 of T, $Y_0 \neq \{0\}$ such that:

$$\sigma(T \mid Y_0) \subset G_0;$$

contradicts [8] Proposition 1.3.7, consequently $S_T \subset S$. But $S_T \neq \emptyset$ implies dim S = 2 (we have Int $S_T \neq \emptyset$) hence Int $S \neq 0$.

THEOREM 2.3. Let $T \in B(X)$ be a Sdecomposable operator and let $F \subset \mathbb{C}$ be a closed set such that

$$S \subset F \subset \sigma(T).$$

Then $X_T(F)$ is a spectral maximal space of T and

$$\sigma(T \mid X_T(F)) \subset F.$$

Conversely, for any spectral maximal space Y of T such that $\sigma(T | Y) \supset S$ we have $Y = X_T(\sigma(T | Y)).$

Proof. Let
$$F \subset \sigma(T)$$
 be closed such that $S \subset F(S_T \subset S \subset F)$ and let G_s , H be two open sets satisfying conditions $G_s \supset F$, $H \cap F = \emptyset$ and $G_s \cup H \supset \sigma(T)$. We shall consider

$$G_1 = G_S, \ G_2 = H.$$

Let $\{Y_i\}_{i=1}^{2}$ be a corresponding system of spectral maximal spaces of *T* such that:

$$\sigma(T \mid Y_i) \subset G_i \quad (i = 1, 2)$$

and

$$X = Y_1 + Y_2.$$

If $x \in X_T(F)$, then $x = y_1 + y_2$, $y_i \in Y_i$ (i = 1, 2)and $\sigma_T(x) \subset F$; for $\lambda \in \rho_T(x) x(\lambda)$ has meaning and

$$(\lambda I - T)x(\lambda) = x$$

hence for $\lambda \in \mathbb{C}F \cap \rho(T | Y_2)$ we have

 $(\lambda I - T)(R(\lambda, T | Y_2)y_2 - x(\lambda)) = y_2 - x = -y_1,$ from which it follows that $\lambda \in \rho_T(y_1)$. But $\lambda \notin S \supset S_T$, consequently $\lambda \in \delta_T(y_1) \cap \Omega_T = \rho_T(y_1)$ and from this it derives that

$$\sigma_T(y_1) \subset F \cup \sigma(T \mid Y_2) \subset F \cup \overline{G}_2$$

therefore

$$\mathbb{C}F \cap \mathbb{C}\overline{G}_2 \subset \rho_T(y_1).$$

Let now Γ be a bounded system of simple closed curves surrounding F and included in $\mathbb{C}F \cap \mathbb{C}\overline{G}_2$. For $\lambda \in \Gamma$ we have

$$y_{1}(\lambda) = -R(\lambda, T | Y_{2})y_{2} + x(\lambda), \text{ Hence}$$
$$\frac{1}{2\pi i} \int_{\Gamma} y_{1}(\lambda) \quad d\lambda =$$
$$-\frac{1}{2\pi i} \int_{\Gamma} R(\lambda, T | Y_{2}) y_{2} \quad d\lambda + \frac{1}{2\pi i} \int_{\Gamma} x(\lambda) \quad d\lambda$$

The spectral maximal space Y_1 of T being Tabsorbing ([14], Proposition 3.1), if $y_1 \in Y_1$, then $y_1(\lambda) \in Y_1$ for $\lambda \in \rho_T(y_1)$ and since $\sigma(T | Y_2)$ is "outside" Γ we obtain

$$\frac{1}{2\pi i} \int_{\Gamma} y_1(\lambda) \quad d\lambda \in Y_1,$$
$$\frac{1}{2\pi i} \int_{\Gamma} R(\lambda, T \mid Y_2) y_2 \quad d\lambda = 0$$

Consequently

$$x = \frac{1}{2\pi i} \int_{|\lambda| = ||T|| + 1} R(\lambda, T) x \quad d\lambda = \frac{1}{2\pi i} \int_{\Gamma} x(\lambda) \quad d\lambda$$
$$= \frac{1}{2\pi i} \int_{\Gamma} y_1(\lambda) \quad d\lambda \in Y_1$$
thus

thus

$$X_T(F) \subset \bigcap_{G_1 \supset F} Y = Z$$
.

By other means, if $z \in \mathbb{Z}$ then from the inclusions $\gamma_T(z) \subset \gamma_{T|Y_1}(z) \subset \sigma(T | Y_1) \subset G_1$

it follows that

$$\sigma_T(z) = \gamma_T(z) \cup S_T \subset \bigcap_{G_1 \supset F} G_1 = F_1$$

hence $z \in X_T(F)$ and $Z \subset X_T(F)$; so we conclude that

$$X_T(F) = \bigcap_{G_1 \supset F} Y_1,$$

from where it follows that $X_T(F)$ is closed. By [14] Proposition 3.4, $X_T(F)$ is a spectral maximal space of *T* and $\sigma(T | X_T(F)) \subset F$. Conversely, if *Y* is a spectral maximal space of *T* such that $\sigma(T | Y) \supset S$, then according to those proved before we obtain that

$$\sigma(T \mid X_T(\sigma(T \mid Y))) \subset \sigma(T \mid Y)$$

hence

$$X_T(\sigma(T | Y)) \subset Y$$
.

But from the evident inclusion $Y \subset X_T(\sigma(T | Y))$ one finally obtains

$$Y = X_T \big(\sigma \big(T \mid Y \big) \big).$$

At this moment the theorem is completely proved. When *T* has the single-valued extension property ($S_T = \emptyset$) we have the following

COROLLARY 2.4. Let $T \in B(X)$ a sdecomposable operator with $S_T = \emptyset$ and let $F \in \mathbb{C}$ be such that either $S \cap F = \emptyset$ or $F \supset S_1$ and $F \cap (S \setminus S_1) = \emptyset$, where S_1 is a separated part of S. Then $X_T(F)$ is a spectral maximal space of T and $\sigma(T \mid X_T(F)) \subset F$. Conversely, if Y is a spectral maximal space of T such that $\sigma(T \mid Y) = F$ and F has one of the two properties above, then $Y = X_T(\sigma(T \mid Y))$.

Proof. If $F \cap S = \emptyset$ ($F \subset \sigma(T)$ closed), by the preceding theorem $X_T(S)$ and $X_T(F \cup S)$ are spectral maximal spaces of *T* and

$$X_T(F \cup S) = X_T(F) + X_T(S),$$

whence it follows that $X_T(F)$ is also a spectral maximal space for T (see [4], Proposition 4.9) and $\sigma(T(X_T(F))) \subset F$.

If

$$S=S_1\cup (S\setminus S_1),$$

where S_1 is a separated part of S and $F \supset S_1$, $F \cap (S \setminus S_1) = \emptyset$, then

$$X_T(F \cup (S \setminus S_1)) = X_T(F) + X_T(S \setminus S_1);$$

therefore $X_T(F)$ is again a spectral maximal space of *T*. The final part of the corollary results identically as in the preceding theorem namely from the evident inclusions $Y \subset X_T(\sigma(T | Y))$ and $\sigma(T | X_T(\sigma(T | Y))) \subset \sigma(T | Y)$.

PROPOSITION 2.5. Let $T \in B(X)$ a Sdecomposable operator and S_1 a separated part of S with dim $S_1 = 0$. Then T is S'-decomposable where $S' = S \setminus S_1$. *Proof.* The case $S_T = \emptyset$ has been proved in Proposition 1.2.9. Keeping the notations from the Proposition 1.2.9 proof, we will obtain the spectral maximal spaces $\{Y_s\} \cup \{Y'\}_1^n$ of T such that $\sigma(T | Y_s) \subset G_s$, $\sigma(T | Y'_i) \subset G'_i$ (i = 1, 2, ..., n)and

 $X = Y_{S} + Y_{1}' + Y_{2}' + \dots + Y_{n}'.$

But $Y_{S} = Y_{\sigma'} + Y_{\sigma_{1}} + Y_{\sigma_{2}} + \ldots + Y_{\sigma_{n}}$, where $\sigma(T | Y_{S}) = \sigma' \cup \sigma_{1} \cup \sigma_{2} \cup \ldots \cup \sigma_{n}$, $\sigma(T | Y_{\sigma'}) = \sigma', \sigma(T | Y_{\sigma_{i}}) = \sigma_{i}$ $(i = 1, 2, ..., n). Y_{\sigma'}, Y_{\sigma_{i}}$ being spectral maximal spaces of *T*, and $\sigma' \subset G_{S'}$, $\sigma_{i} \subset G'_{i} \subset G_{i}$.

Let $\hat{\sigma}_i = \sigma_i \cup \sigma(T | Y'_i)$. Since $\hat{\sigma}_i \cap S' = \emptyset$, we have $X_T(S' \cup \hat{\sigma}_i) = X_T(S') + Y_{\hat{\sigma}_i}$, where $Y_{\hat{\sigma}_i}$ are spectral maximal spaces of T, $\sigma(T | Y_{\hat{\sigma}_i}) \subset \hat{\sigma}_i \subset G_i$ (i = 1, 2, ..., n). We have $Y'_1 + Y_{\sigma_i} \subset Y_{\hat{\sigma}_i}$ and $X_T(S') + Y_{\sigma'} \subset X_T$ $(\sigma' \cup S') = Y_{S'}$, therefore $X = Y_{S'} + Y_{\hat{\sigma}_1} + ... + Y_{\hat{\sigma}_n}$, and T is S'-decomposable.

REMARK 2.6. Let $T \in B(X)$ be a *S*decomposable operator and $S_1 \subset S$ the closing of the set of *S*'s points in which *S* has the dimension 0, dim $S_1 = 0$ and thus that $S' = S \setminus S_1$ be closed (and thus separated from S_1); then from the preceding proposition it follows that *T* is *S'*decomposable.

PROPOSITION 2.7 Let $T_{\alpha} \in (X_{\alpha})$ ($\alpha = 1,2$) and let $T_1 \oplus T_2 \in B(X_1 \oplus X_2)$. If $Y \subset X_1 \oplus X_2$ is a spectral maximal space of $T_1 \oplus T_2$, then $Y = Y_1 \oplus Y_2$, where Y_1 , Y_2 are spectral maximal spaces of T_1 respectively T_2 .

Proof. Let P_1 and P_2 be the corresponding projections: $X_1 = P_1(X_1 \oplus X_2), X_2 = P_2(X_1 \oplus X_2)$. It is easy to verify that P_1 and P_2 switch with $T_1 \oplus T_2$ and since *Y* is ultrainvariant at $T_1 \oplus T_2$, it follows that *Y* is invariant to P_1 and P_2 . By putting $Y_1 = P_1Y$ and $Y_2 = P_2Y$, we have $Y_1 \subset Y$, $Y_2 \subset Y$, $Y_1 \oplus Y_2 \subset Y$, P_1 and P_2 also being projections in the Banach space *Y*, Y_1, Y_2 closed. If $y \in Y$, then $y = P_1y \oplus P_2Y \in Y_1 \oplus Y_2$, so $Y = Y_1 \oplus Y_2$. Let Z_{α} ($\alpha = 1,2$) two invariant at *T* subspace such that

$$\sigma(T_{\alpha} \mid Z_{\alpha}) \subset \sigma(T_{\alpha} \mid Y_{\alpha}) \ (\alpha = 1, 2).$$

Then $Z = Z_1 \oplus Z_2$ is an (closed) invariant subspace at $T_1 \oplus T_2$ and

 $\sigma(T_1 \oplus T_2 | Z_1 \oplus Z_2) \subset \sigma(T_1 \oplus T_2 | Y_1 \oplus Y_2),$

hence $Z_1 \oplus Z_2 \subset Y_1 \oplus Y_2$. From this inclusion it obviously follows that

$$Z_1 \subset Y_1, \ Z_2 \subset Y_2$$

consequently Y_1 and Y_2 are spectral maximal spaces of T_1 , respectively T_2 .

3. SPECTRAL EQUIVALENCE OF \mathcal{A}_S -SCALAR OPERATORS.

\mathcal{A}_S -DECOMPOSABLE AND \mathcal{A}_S -SPECTRAL OPERATORS

For decomposable (respectively, spectral, S -decomposable, S -spectral) operators, we have several important results with respect to spectral equivalence property. Thus if $T_1, T_2 \in \mathbf{B}(X), T_1$ is decomposable (respectively, spectral, Sdecomposable, S-spectral) and T_1, T_2 are spectral equivalent, then T_2 is also decomposable (respectively, spectral, S-decomposable, *S* spectral). Furthermore, if T_1 and T_2 are decomposable (respectively, spectral), then T_1, T_2 are spectral equivalent if and only if the spectral maximal spaces $X_{T_1}(F)$, $X_{T_2}(F)$ of T_1 and T_2 , corresponding to any closed set $F \subset \mathbb{C}$, are equal (respectively, the spectral measures E_1 , E_2 of T_1 and T_2 are equal) ([8], 2.2.1, 2.2.2, 2.2.4). For *S*-decomposable (respectively, S-spectral) operators, the equality of the spectral spaces (respectively, the equality of S-spectral measures) does not induce the spectral equivalence of the operators, but only their S-spectral equivalence.

The behaviour of \mathcal{A} -scalar and \mathcal{A}_S scalar operators with respect to spectral equivalence is completely different. If $T_1 \in \mathbf{B}(X)$ is \mathcal{A} -scalar (respectively, \mathcal{A}_S scalar) and $T_2 \in \mathbf{B}(X)$ is spectral equivalent to T_1 , then T_2 is not \mathcal{A} -scalar (respectively, \mathcal{A}_S scalar), in general; in this situation, we still know that T_2 is decomposable (respectively, *S*-decomposable) and then T_2 is said to be \mathcal{A} -decomposable (respectively, \mathcal{A}_S -decomposable). If in addition *T* commutes with one of its \mathcal{A} -spectral (respectively, \mathcal{A}_S -spectral) functions *U*, i.e. $TU_f = U_f T$, for any $f \in \mathcal{A}$ (respectively, for any $f \in \mathcal{A}_S$), then *T* is said to be \mathcal{A} -spectral (respectively, \mathcal{A}_S -spectral).

Definition 3.1. An operator $T \in \mathbf{B}(X)$ is called \mathcal{A}_S -decomposable if there is an \mathcal{A}_S -spectral function U such that T is spectral equivalent to U_{λ} .

In case that $S = \emptyset$, we have $\mathcal{A}_{\emptyset} = \mathcal{A}$, \mathcal{A}_{\emptyset} -spectral function is \mathcal{A} -spectral function, \mathcal{A}_{\emptyset} -decomposable operator is \mathcal{A} -decomposable operator ([8]).

Theorem 3.2. Let $T \in \mathbf{B}(X)$ such that we

consider the following two assertions:

(I) There is an \mathcal{A}_S -spectral function U such that T is spectral equivalent to U_{λ} (i.e. T is \mathcal{A}_S -decomposable);

(II) There is an \mathcal{A}_S -spectral function U such that for any closed set $F \subset \mathbb{C}$, $F \supset S$, we have:

(a)
$$TX_{U_{\lambda}}(F) \subset X_{U_{\lambda}}(F)$$

(b) $\sigma(T | X_{U_{\lambda}}(F)) \subset F$.

Then the assertion (I) implies the assertion (II), and for case $S = \emptyset$, the assertions (I) and (II) are equivalent.

Proof. Let us suppose that there is an \mathcal{A}_S -spectral function U such that T and U_λ are spectral equivalent. Since U_λ is S-decomposable (Theorem 1.5), then, according to Theorem 1.11, it results that T is S-decomposable and we have

 $X_T(F) = X_{U_{\lambda}}(F)$ for any $F \subset \mathbb{C}$ closed, $F \supset S$. But $X_T(F)$ is invariant to T and $\sigma(T|X_T(F)) \subset F$ (Theorem 2.1.3, [6]), whence it follows (by (1)) that

and

$$\sigma\left(T\left|X_{U_{\lambda}}(F)\right)\subset F\right.$$

 $TX_{U_{\lambda}}(F) \subset X_{U_{\lambda}}(F)$

In case $S = \emptyset$, if the assertion (II) is fulfilled, according to Theorem 2.2.6, [8], we deduce that *T* is decomposable and that the equality (1) holds for any closed set $F \subset \mathbb{C}$. Then *T* is spectral equivalent to U_{λ} (Theorem 2.2.2, [8])

Remark 3.3. If $T \in \mathbf{B}(X)$ is \mathcal{A}_S -decomposable and U is one of its \mathcal{A}_S -spectral functions, then:

1) T is S-decomposable;

and therefore (I) is verified.

2) $X_T(F) = X_{U_{\lambda}}(F)$, for any $F \subset \mathbb{C}$ closed, $F \supset S$;

3) If V is another \mathcal{A}_S -spectral function of T, then U_{λ} and V_{λ} are spectral equivalent (in particular, V_{λ} is spectral equivalent to T);

4) For $S = \emptyset$, if \mathcal{A} is an inverse closed algebra of continuous functions defined on a closed subset of \mathbb{C} and V is another \mathcal{A} -spectral function of T, then U_f and V_f are spectral equivalent, for any $f \in \mathcal{A}$ (see [8]).

Definition 3.4. An operator $T \in \mathbf{B}(X)$ is called \mathcal{A}_S -spectral if it is \mathcal{A}_S -decomposable and commutes with one of its \mathcal{A}_S -spectral functions, hence T is \mathcal{A}_S -spectral if there is an \mathcal{A}_S -spectral function U commuting with T such that T is spectral equivalent to U_{λ} .

For $S = \emptyset$, we have that an \mathcal{A}_{\emptyset} -spectral operator is an \mathcal{A} -spectral operator ([8]).

Theorem 3.5. For an operator $T \in \mathbf{B}(X)$ we consider the following four assertions:

(I) T is A_S -decomposable and commutes with one of its A_S -spectral functions (i.e. T is A_S -spectral);

(II) (II1) T is S-decomposable;

(II2) There is an \mathcal{A}_S -spectral function U commuting with T, i.e. $U_f T = TU_f$, for any $f \in \mathcal{A}_S$;

(II3) $X_T(F) = X_{U_{\lambda}}(F)$, for any $F \subset \mathbb{C}$ closed, $F \supset S$;

(III) (III1) There is an A_S -spectral function U commuting with T;

(III2)
$$\sigma(T | X_{U_{\lambda}}(F)) \subset F$$
, for any
 $F \subset \mathbb{C}$ closed, $F \supset S$;
(IV) $T = S + Q$, where S is an \mathcal{A}_S -scalar
operator and Q is a quasinilpotent operator
commuting with an \mathcal{A}_S -spectral function of S
(not to be confused the compact subset S with the
operator S from the equality $T = S + Q$, S being
the scalar part of T and Q the radical part of T).
Then the assertions (I) and (IV), respectively
(II) and (III) are equivalent, (I) implies (II),
respectively (III), and finally (IV) implies (II).
Proof. (I) \Rightarrow (I),(III). Assuming (I) fulfilled,
we prove that the assertions (II) and (III) are
verified. If T is \mathcal{A}_S -decomposable and
commutes with one of its \mathcal{A}_S -spectral functions
 U , then U_{λ} is spectral-equivalent to T .
Furthermore, U_{λ} being S -decomposable
(Theorem 1.5), then T is S -decomposable
(Theorem 1.12) and we have the equality:

$$X_T(F) = X_{U_\lambda}(F)$$

for any $F \subset \mathbb{C}$ closed, $F \supset S$, hence (II) is fulfilled. From Theorem 2.2, it follows that

$$\sigma\left(T\left|X_{U_{\lambda}}\left(F\right)\right)=\sigma\left(T\left|X_{T}\left(F\right)\right)\subset F\right)$$

for any $F \subset \mathbb{C}$ closed, $F \supset S$, hence (III) is also verified.

(I) \Rightarrow (IV) *T* being \mathcal{A}_S -spectral, there is an \mathcal{A}_S -spectral function *U* commuting with *T*, i.e. $TU_f = U_f T$, for any $f \in \mathcal{A}_S$ (in particular, $TU_{\lambda} = U_{\lambda}T$) such that *T* is spectral equivalent to U_{λ} . But the operator U_{λ} is *S*-decomposable (Theorem 1.5), hence by Theorem 1.12, *T* is also *S*-decomposable and the following equality is verified

 $X_T(F) = X_{U_{\lambda}}(F)$, for any $F \subset \mathbb{C}$ closed, $F \supset S$.

Using the fact that T and U_{λ} commute, it follows that $T - U_{\lambda}$ is a quasinilpotent operator commuting with U, because

$$(T - U_{\lambda})^{[n]} = \sum_{k=0}^{n} (-1)^{n-k} T^{k} U_{\lambda}^{n-k} = (T - U_{\lambda})^{n}$$

and the quasinilpotent equivalence of T and U_{λ} is given by

$$\begin{split} &\lim_{n\to\infty} \left\| \left(T - U_{\lambda}\right)^{[n]} \right\|^{\frac{1}{n}} = \lim_{n\to\infty} \left\| \left(U_{\lambda} - T\right)^{[n]} \right\|^{\frac{1}{n}} = 0 \\ & \text{(we remember that an operator } T \text{ is} \\ & \text{quasinilpotent} \quad \text{if } \lim_{n\to\infty} \left\| T^n \right\|^{\frac{1}{n}} = 0 \quad \text{or,} \\ & \text{equivalently, } \sigma(T) = 0 \text{). We remark that if } U \text{ is} \\ & \text{an } \mathcal{A}_S \text{-spectral function, then } U_{\lambda} \text{ is an } \mathcal{A}_S \text{-scalar operator. Putting } S = U_{\lambda} \text{ and } Q = T - U_{\lambda}, \\ & \text{we have} \end{split}$$

$$T = S + Q$$

where S is \mathcal{A}_S -scalar and Q is quasinilpotent (S is the scalar part of T and Q is the radical part of T).

(IV) \Rightarrow (I) By the hypothesis of assertion (IV), since *S* is an \mathcal{A}_S -scalar operator, we deduce that there is at least one \mathcal{A}_S -spectral function *U* of *S* such that: $S = U_\lambda$, the quasinilpotent operator *Q* commutes with *U* and *S* is *S*-decomposable (Theorem 1.5). It also results that T = S + Q commutes with *U* (since we obviously have $U_\lambda U_f = U_f U_\lambda = = U_{\lambda f}$) and since Q = T - S is quasinilpotent, then *T* is spectral equivalent to *S*, consequently *T* is \mathcal{A}_S spectral.

(III) \Rightarrow (II) Assume that there is an \mathcal{A}_{S} spectral function U commuting with T such that $\sigma\left(T \mid X_{U_{\lambda}}(F)\right) \subset F, \quad \text{for} \quad F \subset \mathbb{C}$ closed, $F \supset S$. On account of the definition and the properties of an \mathcal{A}_S -spectral function and of an \mathcal{A}_S -scalar operator, we remark that U_λ is an \mathcal{A}_{S} -scalar operator, hence U_{λ} is *S* decomposable (Theorem 1.5) and we have $X_{U_{\lambda}}(F) = X_{[U]}(F), \quad F \subset \mathbb{C} \quad \text{closed}, \quad F \supset S$ (Theorem 1.9). But $X_{U_{\lambda}}(F)$ is a spectral maximal space of U_{λ} (Theorem 2.1.3, [6]), hence it is ultrainvariant to U_{λ} (Proposition 1.3.2, [8]); therefore $X_{U_{\lambda}}(F)$ is invariant to T and then the restriction $T \mid X_{U_{\lambda}}(F)$ makes sense and $\sigma(T | X_{U_{\lambda}}(F)) \subset F$.

(II) \Rightarrow (III) The operator *T* being *S*-decomposable, according to Theorem 2.1.3, [6], we have that $X_T(F)$ is a spectral maximal space of *T*, for any $F \subset \mathbb{C}$ closed, $F \supset S$ and

$$\sigma(T | X_T(F)) \subset F \cap \sigma(T)$$

hence (by ((II3)))

$$\sigma\left(T\left|X_{U_{\lambda}}\left(F\right)\right)=\sigma\left(T\left|X_{T}\left(F\right)\right)\subset F.\right.$$

 $(IV) \Rightarrow (II)$ *S* being \mathcal{A}_S -scalar, there is an \mathcal{A}_S -spectral function *U* such that $S = U_{\lambda}$. But from Theorem 1.5, *S* is *S*-decomposable and applying Theorem 1.11 to *T* and *S*, we get that *T* is *S*-decomposable and

$$X_T(F) = X_S(F) = X_{U_\lambda}(F)$$

for any $F \subset \mathbb{C}$ closed, $F \supset S$.

The function U commutes with the quasinilpotent operator Q, i.e. $Q U_f = U_f Q$, for $f \in \mathcal{A}_S$, hence T = S + Q commutes with U.

Remark 3.6. With the same conditions as in Theorem 2.4, if $S = \emptyset$, then the four assertions above are equivalent (see [8]).

Remark 3.7. Let $T_1, T_2 \in \mathbf{B}(X)$ be two spectral equivalent operators. Then we have:

1) If $T_1 \in \mathbf{B}(X)$ is \mathcal{A}_S -scalar (respectively, \mathcal{A} -scalar), then T_2 is not \mathcal{A}_S -scalar (respectively, \mathcal{A} -scalar).

2) If $T_1 \in \mathbf{B}(X)$ is \mathcal{A}_S -decomposable (respectively,

 \mathcal{A} -decomposable), then T_2 is \mathcal{A}_S -decomposable (respectively, \mathcal{A} -decomposable).

3) If $T_1 \in \mathbf{B}(X)$ is \mathcal{A}_S -spectral (respectively, \mathcal{A} -spectral), then T_2 is not \mathcal{A}_S -spectral (respectively, \mathcal{A} -spectral).

4. CONCLUSIONS

We will underline the relevance, importance and necessity of studying the \mathcal{A}_S scalar (respectively, \mathcal{A}_S -decomposable or \mathcal{A}_S spectral) operators, showing the consistence of this class, in the sense of how many and how substantial its subfamilies are. These operators are natural generalizations of the notions of \mathcal{A} scalar, \mathcal{A} -decomposable and \mathcal{A} -spectral operators studied in [8] and appear, in general, as restrictions or quotients of the last one.

We demonstrated some of their properties, leaving the challenge to proof and generalize many others.

References

[1] ALBRECHT, E.J., ESCHMEIER, J., *Analytic functional models and local spectral theory*, Proc. London Math. Soc., **75**, 323-348, 1997.

[2] APOSTOL, C., *Spectral decompositions and functional calculus*, Rev. Roum. Math. Putes et Appl., **13**, 1481-1528 1968.

[3] BACALU, I., On restrictions and quotients of decomposable operators, Rev. Roum. Math. Pures et Appl., **18**, 809-813, 1973.

[4] BACALU, I., *S*-decomposable operators in Banach spaces, Rev. Roum. Math. Pures et Appl., **20**, 1101-1107, 1975.

[5] BACALU, I., *Some properties of decomposable operators*, Rev. Roum. Math. Pures et Appl., **21**, 177-194, 1976.

[6] BACALU, I., *Descompuneri spectrale reziduale* (Residually spectral decompositions), St. Cerc. Mat. I (1980), II (1980), III (1981).

[7] BACALU, I., *S* – Spectral Decompositions, Ed. Politehnica Press, Bucharest, 2008.

[8] COLOJOARĂ, I., FOIAȘ, C., *Theory of generalized spectral operators*, Gordon Breach, Science Publ., New York-London-Paris, 1968.

[9] DOWSON, H.R., *Restrictions of spectral operators*, Proc. London Math. Soc., **15**, 437-457, 1965.

[10] DUNFORD, N., SCHWARTZ, J.T., *Linear operators*, Interscience Publishers, New York, I (1958), II (1963), III (1971).

[11] FRUNZA, ŞT., An axiomatic theory of spectral decompositions for systems of operators (Romanian), II, St. cerc. mat., **27**, (1977).

[12]FRUNZA, ŞT., Une caractérisation des espaces maximaux spectraux des operaterus U-scalaires, Rev. Roum. Math. Pures et Appl., **16** (1607-1609).

[13] LAURSEN, K.B., NEUMANN, M.M., An Introduction to Local Spectral Theory, London Math. Soc. Monographs New Series, Oxford Univ. Press., New-York, 2000.

[14] VASILESCU, F.H., *Residually decomposable operators in Banach spaces*, Tôhoku Math. Journ., **21**, 509-522, 1969.

[15] VASILESCU F.H., Analytic Functional Calculus and Spectral Decompositions, D. Reidel

Publishing Co., Dordrecht, Editura Academiei, Bucharest, 1982.

[16] ZAMFIR, M., BACALU, I., \mathcal{A}_S – -scalar operators, U.P.B. Sci. Bull., Series A, **74**, 89-98, 2012.

Authors' addresses:

Ioan Bacalu Faculty of Applied Sciences, University Politehnica of Bucharest, Romania E-mail: dragosx@yahoo.com Cristina Şerbănescu Faculty of Applied Sciences, University Politehnica of Bucharest, Romania E-mail: mserbanescuc@yahoo.com