
Abstract: This paper is dedicated to the study of some 
properties of the operators which admit residually non-
analytic functional calculus initiated in [16]. We shall also 
define and study the spectral s-capacities, and give several 
s-decomposability criteria. We shall further study the 
restrictions and the S-decomposable operators’ quotients. 

The concepts of SA -spectral function, respectively 

SA -decomposable and SA -spectral operators are 

introduced and characterized here and several elementary 
properties concerning them are studied. These operators are 
natural generalizations of the notions of A -scalar, A -
decomposable and A -spectral operators studied in [8] and 

appear, in generally, as restrictions or quotients of the last 
one. 
M.S.C. 2000: 47B47, 47B40. 
Keywords: A -spectral ( SA -spectral) function; A -scalar 

( SA -scalar); A -decomposable ( SA -decomposable); A -

spectral ( SA -spectral); restrictions and quotients of 
operators. 
 
 

1. INTRODUCTION 
 

Let X  be a Banach space, let ( )XB  be 
the algebra of all linear bounded operators on X  
and let   be the complex plane. If ( )T X∈B  and 
Y X⊂  is a (closed) invariant subspace to T , let 
us denote by |T Y  the restriction of T  to Y , 

respectively by T  the operator induced by T  in 
the quotient space /X X Y= . In what follows, by 
subspace of X  we understand a closed linear 
manifold of X . Recall that Y  is a spectral 
maximal space of T  if it is an invariant subspace 
such that for any other subspace Z X⊂  also 
invariant to T , the inclusion ( ) ( )| |T Z T Yσ σ⊂  
implies Z Y⊂  ([8]). A family of open sets 

{ } 1
n

S i iG G = is an S -covering of the closed set 

σ ⊂   if 
1

n
S i

i
G G Sσ

=

 
  ⊃
 
 

 



 and iG S =∅  

( )1,2,...,i n=  (where S ⊂   is also closed) 
([14]). 

The operator ( )T X∈B  is S -

decomposable (where ( )S Tσ⊂  is compact) if 

for any finite open S -covering { } 1
n

S i iG G =  of 

( )Tσ , there is a system { } 1
n

S i iY Y =  of spectral 

maximal spaces of T  such that ( )| S ST Y Gσ ⊂ , 

( )| i iT Y Gσ ⊂ ( )1,2,...,i n=  and 
1

n
S i

i
X Y Y

=
= +∑  

([4]). If dim 0S = , then S =∅  and T  is 
decomposable ([8]). An open set Ω⊂   is said 
to be a set of analytic uniqueness for ( )T X∈B  
if for any open set ω ⊂ Ω  and any analytic 
function 0 :f Xω →  satisfying the equation 

( ) ( )0 0I T fλ λ− ≡  it follows that ( )0 0f λ ≡  in 

ω  ([14]). For ( )T X∈B  there is a unique 
maximal open set TΩ  of analytic uniqueness 
([14]). We shall denote by \T T TS = Ω = Ω  
and call it the analytic spectral residuum of T . 
For x X∈ , a point λ  is in ( )T xδ  if in a 
neighborhood Vλ  of λ , there is at least an 
analytic X -valued function xf  (called T -
associated to x ) such that ( ) ( )xI T f xµ µ− ≡ , 
for Vλµ ∈ . We shall put 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ){ }

\ ,
\ and

;

T T T T T T

T T T T T

T T

x x x x x
x x x x S

X F x X x F

γ δ δ ρ δ
σ ρ ρ γ

σ

= = = Ω

= = =

= ∈ ⊂

 

 





 
where TS F⊂ ⊂   ([14], [15]). 
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An operator ( )T X∈B  is said to have the 
single-valued extension property if for any 
analytic function :f Xω →  (where ω ⊂   is an 
open set), with ( ) ( ) 0I T fλ λ− = , it follows that 

( ) 0f λ ≡  ([10]). T  has the single-valued 
extension property if and only if TS =∅ ; then we 
have ( ) ( )T Tx xσ γ=  and there is in 

( ) ( )T Tx xρ δ=  a unique analytic function 

( )x λ , T -associated to x , for any x X∈ . We 

shall recall that if ( )T X∈B , TS ≠ ∅ , TS F⊂  

and ( )TX F  is closed, for F ⊂   closed, then 

( )TX F  is a spectral maximal space of T  ([14]). 

We say that two operators ( )1 2,T T X∈B  
are quasinilpotent equivalent if  

( )[ ] ( )[ ]
1 1

1 2 2 1lim lim 0n nn n
n n

T T T T
→∞ →∞

− = − =  

where 

( )[ ] ( )1 2 1 2
0

1
n

n n k k n k

k

n
T T T T

k
− −

=

 
− = −  

 ∑  ([8]). 

 
Definition 1.1. ([16]) Let Ω  be a set of the 
complex plane   and let S ⊂ Ω  be a compact 
subset. An algebra SA  of  -valued functions 
defined on Ω  is called S -normal if for any finite 

open S -covering { } 1
n

S i iG G =  of Ω , there are 

the functions, ,S i Sf f ∈ A  ( )1 i n≤ ≤  such that: 

1) ( ) [ ] ( ) [ ]0, 1 , 0, 1S if fΩ ⊂ Ω ⊂  

( )1 i n≤ ≤ ; 

2) ( ) ( )supp , suppS S i if G f G⊂ ⊂  

( )1 i n≤ ≤ ; 

3) 
1

1
n

S i
i

f f
=

+ =∑  on Ω  

where the support of Sf ∈ A  is defined as: 

( ) ( ){ }supp ; 0f fµ µ= ∈Ω ≠ . 
Definition 1.2. ([16]) An algebra SA  of  -
valued functions defined on Ω  is called S -
admissible if: 

1) , 1S Sλ∈ ∈A A  (where λ  and 1 
denote the functions ( )f λ λ=  and ( ) 1f λ = ); 

2) SA  is S -normal; 
3) for any Sf ∈A  and any ( )supp fξ ∉ , 

the function 

( )
( ) { }

{ }

, for \

0, for

f
fξ

λ
λ ξ

λ ξ λ
λ ξ


∈Ω= −

 ∈Ω 

 

belongs to SA . 
 
Definition 1.3. ([16]) An operator ( )T X∈B  is 
said to be SA -scalar if there are an S -
admissible algebra SA  and an algebraic 
homomorphism ( ): SU X→A B  such that 

1U I=  and U Tλ =  (where 1 is the function 

( ) 1f λ =  and λ  is the function ( )f λ λ= ). The 
mapping U  is called SA -spectral 
homomorphism ( SA -spectral function or SA -
functional calculus) for T . 
If S =∅ , then we put ∅=A A  and we obtain 
an A -spectral function and an A -scalar operator 
([8]). 

The support of an SA -spectral function 
U  is denoted by ( )supp U  and it is defined as 

the smallest closed set F ⊂ Ω  such that 0fU =  

for Sf ∈A  with ( )supp f F =∅ .  
A subspace Y  of X  is said to be 

invariant with respect to an SA -spectral function 

( ): SU X→A B  if fU Y Y⊆ , for any Sf ∈ A . 
 

We recall several important properties of 
an A -spectral function U  ([8]), because we 
want to obtain similar properties for an SA -
spectral function: 

1.U λ  has the single-valued extension 
property, where λ  is the identical function 
( )f λ λ≡ ; 

2. ( ) ( )suppU fU x f
λ

σ ⊂ ,for any f ∈ A  

and x X∈ ; 
3.If ( ) ( )suppU x f

λ
σ = ∅ ,then 

( ) 0fU x = , for any f ∈ A  and x X∈ ; 

4. ( ) ( ){ };U Ux X F x X x F
λ λ

σ∈ = ∈ ⊂  
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( ) 0fU x⇔ = , for any f ∈ A  with 

property ( )supp f F = ∅ , F ⊂ Ω  closed; 

5. ( ) ( )supp U U λσ= ; 
6. U λ  is decomposable. 

 
Theorem 1.4. Let ( )T X∈B  be an SA -scalar 
operator and let U  be an SA -spectral function 
for T . Then we have: 

( ) ( )supp U T Sσ⊂   and ( ) ( )suppT U Sσ ⊂  . 
Proof. Let us consider Sf ∈ A  such that 

( ) ( )( )supp f T Sσ = ∅  . If ( )supp fξ ∉  and 
λ   
is the identical function ( )f λ λ= , then we have  

( ) ( )f ffI U U U U
ξ ξλ ξ λξ −− = =   

hence 
( ),f fU U U

ξ λξ= ℜ , for 

( ) ( )suppU fλξ ρ∈   . 
The function 

( )
( ) ( )

( )
, , for

, for supp
f

f

T U U
F

U f
ξ

λξ ξ ρ
ξ

ξ

ℜ ∈=  ∈ 
 

 
is entire and ( )lim 0F

ξ
ξ

→∞
= , therefore 0F ≡ . 

It follows that 0fU
ξ
=  on ( )supp f  and 

0fU = , hence  

( ) ( )supp U T Sσ⊂  . 

Let now ( )0 supp U Sξ ∉  , let 
0

Vξ  be an 

open neighborhood of 0ξ  and let W  be an open 
neighborhood of ( )supp U S  such that 

0
V Wξ = ∅ . Because the algebra SA  is S -

normal, then there is a function Sf ∈A  with 

( ) 1f µ =  on W  and ( ) 0f µ =  for 
0

Vξµ ∈ . 
Consequently  

( ) ( )( )supp 1 suppf U S− = ∅   
hence 

1 0fU − = , i.e. fU I= . 
Whence 

( ) ( )
0 00 0f f fU I U I U U U I

ξ ξλ λξ ξ− = − = =  

therefore we finally have ( ) ( )0 U Tλξ σ σ∉ =  

and hence ( ) ( )suppT U Sσ ⊂  . 
 
Theorem 1.5. (Properties of SA -spectral 
functions) 
Let U  be an SA -spectral function (particularly, 
U  is an SA -spectral function for an SA -scalar 
operator ( )T X∈B , T Uλ= ). Then we have the 
following properties: 

(1) The spectral analytic residuum TS  
has the property: TS S⊂ ; when TS =∅  
(particularly, S =∅ ), then T  has the single-
valued extension property; 

(2) If ( )0 0 0I U xλλ − = , with 0 0x ≠  

and Sf ∈ A  with ( )f cλ = , for Gλ ∈ Ω , 
where G  is a neighborhood of 0λ , then 

0 0fU x c x= ; 

(3) If Sf ∈ A  and x X∈ , then 

( ) ( )suppT fU x fγ ⊂ ;moreover,if ( )supp f S⊃ , 

then ( ) ( )suppT fU x fσ ⊂ ; 

(4) If Sf ∈ A  such that 
( ) ( )suppU x f

λ
σ = ∅  and TS =∅ , then 

0fU x = ; 
(5) If F ⊂ Ω  closed, with F S⊃ , x X∈  

and TS =∅ , then ( )Ux X F
λ

∈  if and only if 

0fU x = , for any Sf ∈ A  with the property 

( )supp f F = ∅ ; 
(6) U λ  is S -decomposable. 

Proof. The assertions (1) and (2) are proved in 
[16], Theorem 3.2, respectively Lemma 3.1. 
(3) We observe that for any ( )supp fξ ∉  we 
have Sfξ ∈ A  and the X -valued function 

fU x
ξ

ξ →  is analytic. Consequently, 

( ) ( )f f fI T U x I U U x U x
ξ ξλξ ξ− = − = , 

therefore ( )T fU xξ δ∈ , hence 

( ) ( )suppT fU x fγ ⊂ . 

Furthermore, for Sf ∈ A  with 

( )supp f S⊃ , we deduce 
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( ) ( )
( ) ( )supp

T f T T f

T f

U x S U x

S U x f

σ γ

γ

=

⊂ ⊂





. 

(4) Let ( )x ξ  be the unique analytic X -valued 

function defined on ( )U x
λ

ρ  which satisfies the 
equality  

( ) ( )I U x xλξ ξ− =  on ( )U x
λ

ρ . 
It results that  
( ) ( ) ( ) ( )f f fI U U x U I U x U xλ λξ ξ ξ ξ− = − =

on ( )U x
λ

ρ  
hence the following inclusions are obtained 

( ) ( )U U fx U x
λ λ

ρ ρ⊂  and 

( ) ( )U f UU x x
λ λ

σ σ⊂ . 

From assertion (3),  
( ) ( ) ( )
( ) ( )supp

U f T f T T f

T f

U x U x S U x

U x f
λ

σ σ γ

γ

= =

= ⊂



,  

hence 
( ) ( ) ( )suppU f UU x f x

λ λ
σ σ⊂ =∅ , 

therefore according to Proposition 1.1.2, [8], it 
follows that 0fU x = . 

The property (5) can be obtained by using 
(4), as in the proof of Proposition 3.1.17, [8] and 
will be omitted. 

The proof of (6) is presented in [14], 
Theorem 3.3. 
 
Lemma 1.6. Let U  be an SA -spectral function. 
If 1G  is an open neighborhood of ( )supp U , 

( )1 suppG U⊃  and 2G  is an open set such that 

1 2G G ⊃ Ω , ( )2 suppG U =∅  (i.e. { }1 2,G G  

is an open covering of Ω ), then by S -normality 
of the algebra SA  it results that there are tow 
functions 1 2, Sf f ∈ A  such that: 

( ) ( )1 20 1, 0 1,f fλ λ λ≤ ≤ ≤ ≤ ∈Ω ,  

( )1 1supp f G⊂ , ( )2 2supp f G⊂  and 

1 2 1f f+ =  on Ω . 
With these conditions we have: 
a) 

1fU I= , 
2

0fU =  

b) For Sf ∈A  having the property that 
1f =  on a neighborhood of ( )supp U , it results 

that fU I= . 

Proof. We have 
( ) ( )
( ) ( )

1 2 2

1

supp 1 supp
supp 1 supp

f f G
f U

− = ⊂

− =∅

 

hence 

1 11 10 f fU U U−= = −  
therefore 

1 1fU U I= =  and 
2

0fU = . 

Moreover, for Sf ∈A  with the property 
that 1f =  on a neighborhood of ( )supp U  we 
have 

fU I=  
because it can be chosen in this case: 

1 2,f f f g= = , with ( ) ( )supp suppg U =∅ , 
hence 0gU =  and accordingly 

1f g f gU U I U U+ = = = + , whence fU I= . 
 
Remark 1.7. From Lemma 1.6, it results that if 

Sf ∈A  and 1f =  in a neighborhood of 

( )supp U , then fU I= . If we denote by 

0
f

f
U Y

∈
∨

A
 the linear subspace of X  generated 

by fU Y , where Y X⊂  and 0A  is the set of all 

functions in SA  with compact support, then we 
have: 

0
f

f
U X X

∈
=∨

A
. 

 
Definition 1.8. Let U  be an SA -spectral 
function. For any open set SG∈G  we denote 

[ ] ( )
( )supp

fUX G U X
f G

=
⊂

∨  

and for any closed set SF ∈  we put  

[ ] ( ) [ ] ( )U U
G F

X F X G
⊃

=


. 

where S  (respectively, SG ) is the family of all 
closed (respectively, open) subsets F ⊂   
(respectively, G ⊂  ) having the property: either 
F S = ∅  or F S⊃  (respectively, G S =∅  or 
G S⊃ ).  

 
Theorem 1.9. Let U  be an SA -spectral 
function. Then 
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[ ] ( ) ( ) ( ){ };U UUX F X F x X x F
λ λ

σ= = ∈ ⊂ , for 

,SF F S∈ ⊃ . 
Proof. If ( )U x F

λ
σ ⊂ , for SF ∈ , with F S⊃ , 

let us consider SG∈G  an open set with 
G F S⊃ ⊃ . Then by S -normality of SA  there is 
a function Sf ∈A  such that 

( ) ( )
1, for in a neighborhood of

0, for in a neighborhood of \

F
f

G

ξ
ξ

ξ

Ω
=

Ω Ω









 
and therefore ( )supp f G⊂ , whence 

( ) ( ) ( )supp 1 supp 1Uf x f F
λ

σ− ⊂ − =∅  . 

According to Theorem 1.5, 1 0fU x− = , 
hence  

[ ] ( )f Ux U x X G= ∈ . 

SG∈G  being an arbitrary open set with 
, SG F F⊃ ∈ , we have  

[ ] ( )Ux X F∈ , i.e. ( ) [ ] ( )U UX F X F
λ

⊆ . 

Conversely, let us show that 

[ ] ( ) ( )UUX F X F
λ

⊂ , for any SF ∈ , F S⊃ .  

Let [ ] ( ) [ ] ( )U Ux X F X G∈ ⊂ , for any 

open set SG∈G , G F S⊃ ⊃ , and let 1 SG ∈G  be 

an arbitrary open set containing G . By S -
normality of SA , there is a function 1 Sf ∈A  
such that 

( )
( )1

1

1, for

0, for \

G
f

G

ξ
ξ

ξ

 ∈ Ω= 
∈Ω Ω





 

hence ( ) 11supp f G⊂ . Therefore for any Sf ∈A  

with ( )supp f G⊂  we have 1f f f= , so that  

1f f fU U U= , i.e. 

[ ] ( ) [ ] ( )
1

| |f U UU X G I X G=  

whence  

1fU x x= . 
According to Theorem 1.5 it follows that  

( ) ( ) ( ) ( ) ( )
1 1 1 11suppU U f U f U U fx U x U x S U x f G

λ λ λ λ λ
σ σ γ γ= = = ⊂ ⊂

 
and hence 

( )
1

1

1
S

U
G
G G

x G G
λ

σ
∈

⊃

= =


G
. 

SG∈G  being an arbitrary open set, G F S⊃ ⊃ , 
we obtain  

( )
S

U
G

G F S

x G F
λ

σ
∈
⊃ ⊃

⊂ =


G
, hence ( )Ux X F

λ
∈ . 

 
Corollary 1.10. If U  is an SA -spectral function, 
then for any SF ∈  with F S⊃ , [ ] ( )UX F  is a 

maximal spectral space for Uλ . 
Proof. It results easily from the previous theorem. 
 
Theorem 1.11. Let ( )1 2,T T X∈B . If 1T  is S -
decomposable (in particular, decomposable) and 

1 2,T T  are spectral equivalent, then 2T  is also 
S -decomposable (in particular, decomposable) 
and 

( ) ( )
1 2T TX F X F= ,  

for any F ⊂   closed, F S⊃  (when S =∅ , for 
any F ⊂   closed).  
If 1T  and 2T  are decomposable, then 1T  is 
spectral equivalent to 2T  if and only if their 
spectral spaces ( )

1TX F  and ( )
2TX F  are 

equal, i.e. ( ) ( )
1 2T TX F X F= , for any F ⊂   

closed ([8], 2.2.1, 2.2.2). 
If 1T  and 2T  are S -decomposable and spectral 
equivalent, then their spectral spaces are equal, 
i.e. ( ) ( )

1 2T TX F X F= , for any F ⊂   closed, 
F S⊃ , but conversely is not true. 

 
 

2. THE STRUCTURE OF SPECTRAL 
MAXIMAL SPACES OF  

S-DECOMPOSABLE OPERATORS 
 

This paragraph is devoted to the study of 
the S-decomposable operators defined in the 
introduction (see [6], [7]). First, we reveal some 
structural properties of spectral maximal spaces 
of the S-decomposable operators. Then, we shall 
present the behavior of these operators at direct 
sums, at projections, at separate parts of the 
spectrum, at the Riesz-Dunfort functional 
calculus and at the quasinilpotent equivalence. 
We will also give proof of an important structural 
theorem of spectral maximal spaces, generalising 
the following from [11] and [12].  
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LEMMA 2.1. Let ( )XBT ∈ be a S-

decomposable operator, and let G be an open set 
such that: 

( )( ) ∅=σ∩ STG \  
then there exists a maximal spectral space 

{ }0≠Y  of T such that ( ) GYT ⊂σ / . If 1dim ≤S  
and ( ) ∅≠σ∩ TG Int  (G being an open set), then 
there exists a maximal spectral space { }0≠Y  of T 
such that ( ) GYT ⊂σ / . 

 
Proof. Let SG be an open set such that: 

( )TGS S σ⊃/⊂  
and 

( )TGGS σ⊃∪ . 
 
T being S-decomposable, there exists a system of 
spectral maximal spaces SY , Y  from T such that: 

( ) SS GYT ⊂σ | , ( ) GYT ⊂σ |  
and 

YXX S += . 
If { }0=Y , we have XYS =  and 
( ) ( ) SS GTYT ⊂σ=σ | , contradiction, hence 
{ }0≠Y . When 1dim ≤S  and ( ) ∅≠σ∩ TG Int  it 

follows that ( )( ) ∅≠σ∩ SYTG \| , consequently 
{ }0≠Y .     

       
THEOREM 2.2.. If ( )XBT ∈  is S-

decomposable where 1dim ≤S , then 
( ) ( ) ∅=σ=σ TT rp

00  (see [8],Theorem 1.3.6), 
T has the single-valued extension property 
( ∅=TS ) and ( ) ( )TT lσ=σ . If ∅≠TS , then 

SST ⊂  and 2dim =S . 
 
Proof. If ( ) ∅=σ Tp

0 , let G be a component 

of ( )Tp
0σ . Then, by [37] Proposition 1.3.7, there 

doesn’t exist any spectral maximal space { }0≠Y  
of T such that 

( ) GYT ⊂σ | ; 
by the preceding lemma, ( ) ∅=σ∩ TG , therefore 

( ) ∅=σ∩ TG p
0  which is impossible (since 

( ) ( )TTG p σ⊂σ⊂ Int0 ). Same for ( )Trσ . 
Consequently 

( ) ( ) ∅=σ=σ TT rp
00  

since ( )TS pT
0σ= , and ( ) ( ) ( )TTT lr σσ=σ \0 , we 

have ∅=TS  (meaning that T has the single-
valued extension property) and 

( ) ( )TT lσ=σ . 
Now let ∅≠TS . In order to verify the inclusion 

SST ⊂  it will suffice to verify that ( ) STp ⊂σ0 . 

Suppose that ( ) STp ⊂/σ0 ; then there exists a 

component 0G  of ( )Tp
0σ  such that: 

SG ⊂/0  and ( )( ) ∅≠σ∩ STG \0 . 
By the preceding lemma there follows that there 
exists a spectral maximal space 0Y  of T, { }00 ≠Y  
such that: 

( ) 00| GYT ⊂σ ; 
contradicts [8] Proposition 1.3.7, consequently 

SST ⊂ . But ∅≠TS  implies 2dim =S  (we 
have ∅≠TSInt ) hence 0Int ≠S .  
   

THEOREM 2.3. Let ( )XBT ∈  be a S-
decomposable operator and let F ⊂   be a 
closed set such that 

( )TFS σ⊂⊂ . 
Then ( )FX T  is a spectral maximal space of T 
and 

( )( ) FFXT T ⊂σ | . 
Conversely, for any spectral maximal space Y of 
T such that ( ) SYT ⊃σ |  we have 

( )( )YTXY T |σ= . 
 
Proof. Let ( )TF σ⊂  be closed such that 

FS ⊂ ( FSST ⊂⊂ ) and let SG , H be two open 
sets satisfying conditions FGS ⊃ , ∅=∩ FH  
and ( )THGS σ⊃∪ . We shall consider 

SGG =1 , HG =2 . 

Let { }2
1iY  be a corresponding system of spectral 

maximal spaces of T such that: 
( ) ii GYT ⊂σ |  ( 2,1=i ) 

and 
21 YYX += . 

If ( )FXx T∈ , then 21 yyx += , ii Yy ∈  ( 2,1=i ) 
and ( ) FxT ⊂σ ; for ( )xTρ∈λ  ( )λx  has meaning 
and 

( ) ( ) xxTI =λ−λ  
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hence for ( )2|F T Yλ∈ ∩ρ  we have 
( ) ( ) ( )( ) 1222|, yxyxyYTRTI −=−=λ−λ−λ , 

from which it follows that ( )1yTρ∈λ . But 

TSS ⊃∉λ , consequently ( )1T yλ∈δ ∩  

( )1T T y∩Ω = ρ  and from this it derives that 

( ) ( ) 221 | GFYTFyT ∪⊂σ∪⊂σ  
therefore 

( )2 1TF G y∩ ⊂ ρ  . 
Let now Γ  be a bounded system of simple closed 
curves surrounding F and included in 2F G∩  . 
For Γ∈λ  we have 

( ) ( ) ( )λ+λ−=λ xyYTRy 221 |, , Hence 

( )

( ) ( )

1

2 2

1 d
2 i

1 1, | d d
2 i 2 i

y

R T Y y x

Γ

Γ Γ

λ λ =
π

− λ λ + λ λ
π π

∫

∫ ∫
. 

The spectral maximal space 1Y  of T being T-
absorbing ([14], Proposition 3.1), if 11 Yy ∈ , then 
( ) 11 Yy ∈λ  for ( )1yTρ∈λ  and since ( )2| YTσ  is 

“outside” Γ  we obtain 

( )1 1
1 d

2 i
y Y

Γ
λ λ∈

π ∫ , 

( )2 2
1 , | d 0

2 i
R T Y y

Γ
λ λ =

π ∫ . 

Consequently 

( ) ( )

( )

1

1 1

1 1, d d
2 i 2 i

1 d Y
2 i

T

x R T x x

y

λ

λ λ λ λ
π π

λ λ
π

= +
Γ

Γ

= =

= ∈

∫ ∫

∫
, 

thus 
( ) ZYFX

FG
T =⊂

⊃


1

. 

By other means, if Z∈z  then from the inclusions 
( ) ( ) ( ) 11| |

1
GYTzz YTT ⊂σ⊂γ⊂γ  

it follows that 
( ) ( ) 11

1

FGSzz
FG

TTT =⊂∪γ=σ
⊃


 

hence ( )FXz T∈  and ( )FXZ T⊂ ; so we 
conclude that 

( )


FG
T YFX

⊃

=
1

1 , 

from where it follows that ( )FX T  is closed. By 
[14] Proposition 3.4, ( )FX T  is a spectral maximal 
space of T and ( )( ) FFXT T ⊂σ | . Conversely, if 

Y is a spectral maximal space of T such that 
( ) SYT ⊃σ | , then according to those proved 

before we obtain that 
( )( )( ) ( )YTYTXT T ||| σ⊂σσ  

hence 
( )( ) YYTXT ⊂σ | . 

But from the evident inclusion ( )( )YTXY T |σ⊂  
one finally obtains 

( )( )YTXY T |σ= . 
At this moment the theorem is completely 
proved. When T has the single-valued extension 
property ( ∅=TS ) we have the following  
      
 COROLLARY 2.4. Let ( )XBT ∈  a s-
decomposable operator with ∅=TS  and let 
F ∈  be such that either ∅=∩ FS  or 1SF ⊃  
and ( ) ∅=∩ 1\ SSF , where 1S  is a separated 
part of S. Then ( )FX T  is a spectral maximal 
space of T and ( )( ) FFXT T ⊂σ | . Conversely, if 
Y is a spectral maximal space of T such that 
( ) FYT =σ |  and F has one of the two properties 

above, then ( )( )YTXY T |σ= . 
 
Proof. If ∅=∩ SF  ( ( )TF σ⊂  closed), 

by the preceding theorem ( )SXT  and ( )SFX T ∪  
are spectral maximal spaces of T and 

( ) ( ) ( )SXFXSFX TTT +=∪ , 
whence it follows that ( )FX T  is also a spectral 
maximal space for T (see [4], Proposition 4.9) 
and ( )( )( ) FFXT T ⊂σ . 
If 

( )11 \ SSSS ∪= , 
where 1S  is a separated part of S and 1SF ⊃ , 

( ) ∅=∩ 1\ SSF , then 
( )( ) ( ) ( )11 \\ SSXFXSSFX TTT +=∪ ; 

therefore ( )FX T  is again a spectral maximal 
space of T. The final part of the corollary results 
identically as in the preceding theorem namely 
from the evident inclusions ( )( )YTXY T |σ⊂  and 

( )( )( ) ( )YTYTXT T ||| σ⊂σσ .   
   

PROPOSITION 2.5. Let ( )XBT ∈  a S-
decomposable operator and 1S  a separated part 
of S with 0dim 1 =S . Then T is S ′ -decomposable 
where 1\ SSS =′ . 
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Proof. The case ∅=TS  has been proved in 

Proposition 1.2.9. Keeping the notations from the 
Proposition 1.2.9 proof, we will obtain the 
spectral maximal spaces { } { }n

S YY 1′∪  of T  such 
that ( ) SS GYT ⊂σ | , ( ) ii GYT ′⊂′σ |  ( ni ,...,2,1= ) 
and 

nS YYYYX ′++′+′+= ...21 . 
But 

n
YYYYYS σσσσ′ ++++= ...

21
, where 

( ) 1 2| ST Y ′σ = σ ∪σ ∪σ ∪ ... n∪σ ,
( ) σ′=σ σ′YT | , ( ) ii

YT σ=σ σ|  ( ni ,...,2,1= ). σ′Y ,
i

Yσ  
being spectral maximal spaces of T, and SG ′⊂σ′ , 

iii GG ⊂′⊂σ . 
Let ( )iii YT ′σ∪σ=σ |ˆ . Since ∅=′∩σ Siˆ , we 
have ( ) ( )

i
YSXSX TiT σ+′=σ∪′ ˆˆ , where 

i
Yσ̂  are 

spectral maximal spaces of T, ( ) ii GYT
i

⊂σ⊂σ σ ˆ| ˆ  
( ni ,...,2,1= ). We have 

ii
YYY σσ ⊂+′ ˆ1  and 

( )T TX S Y X′σ′ + ⊂  ( ) SS Y ′′ ′σ ∪ = , therefore 

n
YYYX S σσ′ +++= ˆˆ ...

1
,and T is S ′ -decomposable. 

       
REMARK 2.6. Let ( )XBT ∈  be a S-

decomposable operator and SS ⊂1  the closing of 
the set of S‘s points in which S has the dimension 
0, 0dim 1 =S  and thus that 1\ SSS =′  be closed 
(and thus separated from 1S ); then from the 
preceding proposition it follows that T is S ′ -
decomposable. 

 
PROPOSITION 2.7 Let ( )αα ∈ XT  ( 2,1=α ) 

and let ( )2121 XXBTT ⊕∈⊕ . If 21 XXY ⊕⊂  is 
a spectral maximal space of 21 TT ⊕ , then 

21 YYY ⊕= , where 1Y , 2Y  are spectral maximal 
spaces of 1T  respectively 2T . 

 
Proof. Let 1P  and 2P  be the corresponding 

projections: ( )2111 XXPX ⊕= , ( )2122 XXPX ⊕= . 
It is easy to verify that 1P  and 2P  switch with 

21 TT ⊕  and since Y is ultrainvariant at 21 TT ⊕ , it 
follows that Y is invariant to 1P  and 2P . By 
putting YPY 11 =  and YPY 22 = , we have YY ⊂1 , 

YY ⊂2 , YYY ⊂⊕ 21 , 1P  and 2P  also being 
projections in the Banach space Y, 1Y , 2Y  closed. 
If Yy∈ , then 2121 YYYPyPy ⊕∈⊕= , so 

21 YYY ⊕= . Let αZ  ( 2,1=α ) two invariant at T 
subspace such that 

( ) ( )αααα σ⊂σ YTZT ||  ( 2,1=α ). 
Then 21 ZZZ ⊕=  is an (closed) invariant 
subspace at 21 TT ⊕  and 

( ) ( )21212121 || YYTTZZTT ⊕⊕σ⊂⊕⊕σ , 
hence 2121 YYZZ ⊕⊂⊕ . From this inclusion it 
obviously follows that 

11 YZ ⊂ , 22 YZ ⊂  
consequently 1Y  and 2Y  are spectral maximal 
spaces of 1T , respectively 2T .   
  
 

3.  SPECTRAL  EQUIVALENCE  OF  
SA -SCALAR  OPERATORS. 

    SA -DECOMPOSABLE  AND  SA -
SPECTRAL  OPERATORS 
 

For decomposable (respectively, spectral, 
S -decomposable, S -spectral) operators, we have 
several important results with respect to spectral 
equivalence property. Thus if ( )1 2,T T X∈B , 1T  
is decomposable (respectively, spectral, S -
decomposable, S -spectral) and 1 2,T T  are 
spectral equivalent, then 2T  is also decomposable 
(respectively, spectral, S -decomposable, S -
spectral). Furthermore, if 1T  and 2T  are 
decomposable (respectively, spectral), then 

1 2,T T  are spectral equivalent if and only if the 
spectral maximal spaces ( ) ( )

1 2
,T TX F X F  of 

1T  and 2T , corresponding to any closed set 
F ⊂  , are equal (respectively, the spectral 
measures 1 2,E E  of 1T  and 2T  are equal) ([8], 
2.2.1, 2.2.2, 2.2.4). For S -decomposable 
(respectively, S -spectral) operators, the equality 
of the spectral spaces (respectively, the equality 
of S -spectral measures) does not induce the 
spectral equivalence of the operators, but only 
their S -spectral equivalence.  

The behaviour of A -scalar and SA -
scalar operators with respect to spectral 
equivalence is completely different. If 

( )1T X∈B  is A -scalar (respectively, SA -

scalar) and ( )2T X∈B  is spectral equivalent to 

1T , then 2T  is not A -scalar (respectively, SA -
scalar), in general; in this situation, we still know 
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that 2T  is decomposable (respectively, S -
decomposable) and then 2T  is said to be A -
decomposable (respectively, SA -decomposable). 
If in addition T  commutes with one of its A -
spectral (respectively, SA -spectral) functions U , 
i.e. f fT U U T= , for any f ∈A  (respectively, 

for any Sf ∈A ), then T  is said to be A -spectral 
(respectively, SA -spectral).  
 
Definition 3.1. An operator ( )T X∈B  is called 

SA -decomposable if there is an SA -spectral 
function U  such that T  is spectral equivalent to 
U λ . 
In case that S =∅ , we have ∅ =A A , ∅A -
spectral function is A -spectral function, ∅A -
decomposable operator is A -decomposable 
operator ([8]). 
 
Theorem 3.2. Let ( )T X∈B  such that we 
consider the following two assertions: 
(I) There is an SA -spectral function U  such 
that T  is spectral equivalent to U λ  (i.e. T  is 

SA -decomposable); 
(II) There is an SA -spectral function U  such 
that for any closed set F ⊂  , F S⊃ , we have: 

(a) ( ) ( )U UT X F X F
λ λ

⊂   

(b) ( )( )UT X F F
λ

σ ⊂ . 

Then the assertion (I) implies the assertion (II), 
and for case S =∅ , the assertions (I) and (II) are 
equivalent. 
Proof. Let us suppose that there is an SA -spectral 
function U  such that T  and U λ  are spectral 
equivalent. Since U λ  is S -decomposable 
(Theorem 1.5), then, according to Theorem 1.11, 
it results that T  is S -decomposable and we have 

( ) ( )T UX F X F
λ

= for any F ⊂   

closed, F S⊃ . But ( )TX F  is invariant to T  and 

( )( )TT X F Fσ ⊂  (Theorem 2.1.3, [6]), whence 

it follows (by (1)) that 
( ) ( )U UT X F X F

λ λ
⊂  

and 
( )( )UT X F F

λ
σ ⊂ . 

In case S =∅ , if the assertion (II) is fulfilled, 
according to Theorem 2.2.6, [8], we deduce that 
T  is decomposable and that the equality (1) 
holds for any closed set F ⊂  . Then T  is 
spectral equivalent to U λ  (Theorem 2.2.2, [8]) 
and therefore (I) is verified. 
 
Remark 3.3. If ( )T X∈B  is SA -decomposable 
and U  is one of its SA -spectral functions, then: 

1) T  is S -decomposable; 
2) ( ) ( )T UX F X F

λ
= , for any F ⊂   

closed, F S⊃ ; 
3) If V  is another SA -spectral function 

of T , then U λ  and Vλ  are spectral equivalent 
(in particular, Vλ  is spectral equivalent to T ); 

4) For S =∅ , if A  is an inverse closed 
algebra of continuous functions defined on a 
closed subset of   and V  is another A -spectral 
function of T , then fU  and fV  are spectral 
equivalent, for any f ∈ A  (see [8]). 
 
Definition 3.4. An operator ( )T X∈B  is called 

SA -spectral if it is SA -decomposable and 
commutes with one of its SA -spectral functions, 
hence T  is SA -spectral if there is an SA -
spectral function U  commuting with T  such that 
T  is spectral equivalent to U λ .  
For S =∅ , we have that an ∅A -spectral 
operator is an A -spectral operator ([8]). 
 
Theorem 3.5. For an operator ( )T X∈B  we 
consider the following four assertions:  
( )I  T  is SA -decomposable and commutes 
with one of its SA -spectral functions (i.e. T  is 

SA -spectral); 
( )II  ( )II1  T  is S -decomposable; 

( )II2  There is an SA -spectral function U  
commuting with T , i.e. f fU T T U= , for  

any Sf ∈A ; 

( )II3  ( ) ( )T UX F X F
λ

= , for any F ⊂   
closed, F S⊃ ; 
( )III  ( )III1  There is an SA -spectral function 
U  commuting with T ; 
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( )III2  ( )( )| UT X F F
λ

σ ⊂ , for any 

F ⊂   closed, F S⊃ ; 
( )IV  T S Q= + , where S  is an SA -scalar 
operator and Q  is a quasinilpotent operator 
commuting with an SA -spectral function of S  
(not to be confused the compact subset S  with the 
operator S  from the equality T S Q= + , S  being 
the scalar part of T and Q  the radical part of T ). 
Then the assertions ( )I  and ( )IV , respectively 

( )II  and ( )III  are equivalent, ( )I  implies ( )II , 

respectively ( )III ,  and finally ( )IV  implies ( )II . 

Proof. ( ) ( ) ( )I II , III⇒ . Assuming (I) fulfilled, 
we prove that the assertions (II) and (III) are 
verified. If T  is SA -decomposable and 
commutes with one of its SA -spectral functions 
U , then U λ  is spectral-equivalent to T . 
Furthermore, U λ  being S -decomposable 
(Theorem 1.5), then T  is S -decomposable 
(Theorem 1.12) and we have the equality: 

( ) ( )T UX F X F
λ

=  

for any F ⊂   closed, F S⊃ , hence ( )II  is 
fulfilled. From Theorem 2.2, it follows that 

( )( ) ( )( )U TT X F T X F F
λ

σ σ= ⊂  

for any F ⊂   closed, F S⊃ , hence ( )III  is 
also verified. 
( ) ( )I IV⇒  T  being SA -spectral, there is an 

SA -spectral function U  commuting with T , i.e. 

f fT U U T= , for any Sf ∈A  (in particular, 

T U U Tλ λ= ) such that T  is spectral equivalent 
to U λ . But the operator U λ  is S -decomposable 
(Theorem 1.5), hence by Theorem 1.12, T  is also 
S -decomposable and the following equality is 
verified 

( ) ( )T UX F X F
λ

= , for any F ⊂   closed, 
F S⊃ . 

Using the fact that T  and U λ  commute, it 
follows that T U λ−  is a quasinilpotent operator 
commuting with U , because 

( )[ ] ( ) ( )
0

1
n

n nn k k n k

k

T U T U T Uλ λ λ
− −

=

− = − = −∑
 

and the quasinilpotent equivalence of T  and U λ  
is given by 

( )[ ] ( )[ ]
1 1

lim lim 0n nn n
n n

T U U Tλ λ
→∞ →∞

− = − =  

(we remember that an operator T  is 

quasinilpotent if
1

lim 0n n
n

T
→∞

=  or, 

equivalently, ( ) 0Tσ = ). We remark that if U  is 
an SA -spectral function, then U λ  is an SA -
scalar operator. Putting S U λ=  and Q T U λ= − , 
we have  

T S Q= +  
where S  is SA -scalar and Q  is quasinilpotent 
( S  is the scalar part of T  and Q  is the radical 
part of T ). 
( ) ( )IV I⇒  By the hypothesis of assertion 

( )IV , since S  is an SA -scalar operator, we 
deduce that there is at least one SA -spectral 
function U  of S  such that: S U λ= , the 
quasinilpotent operator Q  commutes with U  and 
S  is S -decomposable (Theorem 1.5). It also 
results that T S Q= +  commutes with U  (since 
we obviously have f fU U U Uλ λ= =  fU λ= ) 
and since Q T S= −  is quasinilpotent, then T  is 
spectral equivalent to S , consequently T  is SA -
spectral.  
( ) ( )III II⇒  Assume that there is an SA -
spectral function U  commuting with T  such that 

( )( )| UT X F F
λ

σ ⊂ , for F ⊂   closed, 

F S⊃ . On account of the definition and the 
properties of an SA -spectral function and of an 

SA -scalar operator, we remark that Uλ  is an 

SA -scalar operator, hence Uλ  is S -
decomposable (Theorem 1.5) and we have 

( ) [ ] ( )U UX F X F
λ

= , F ⊂   closed, F S⊃  

(Theorem 1.9). But ( )UX F
λ

 is a spectral 

maximal space of Uλ  (Theorem 2.1.3, [6]), 
hence it is ultrainvariant to Uλ  (Proposition 
1.3.2, [8]); therefore ( )UX F

λ
 is invariant to T  

and then the restriction ( )| UT X F
λ

 makes sense 

and ( )( )| UT X F F
λ

σ ⊂ .  

INTERNATIONAL JOURNAL of PURE MATHEMATICS Volume 1, 2014

ISSN: 2313-0571 65



( ) ( )II III⇒  The operator T  being S -
decomposable, according to Theorem 2.1.3, [6], 
we have that ( )TX F  is a spectral maximal space 
of T , for any F ⊂   closed, F S⊃  and 

( )( ) ( )| TT X F F Tσ σ⊂   

hence (by ( ( )II3 )  

( )( ) ( )( )U TT X F T X F F
λ

σ σ= ⊂ . 

( ) ( )IV II⇒  S  being SA -scalar, there is an 

SA -spectral function U  such that S U λ= . But 
from Theorem 1.5, S  is S -decomposable and 
applying Theorem 1.11 to T  and S , we get that 
T  is S -decomposable and  

( ) ( ) ( )T S UX F X F X F
λ

= =  
for any F ⊂   closed, F S⊃ .  

The function U  commutes with the 
quasinilpotent operator Q , i.e. f fQ U U Q= , 

for Sf ∈A , hence T S Q= +  commutes with U . 
 
Remark 3.6. With the same conditions as in 
Theorem 2.4, if S =∅ , then the four assertions 
above are equivalent (see [8]). 
 
Remark 3.7. Let ( )1 2,T T X∈B  be two spectral 
equivalent operators. Then we have: 
1) If ( )1T X∈B  is SA -scalar (respectively, A -
scalar), then 2T  is not SA -scalar (respectively, 
A -scalar). 
2) If ( )1T X∈B is SA -decomposable(respectively, 
A -decomposable), then 2T  is SA -decomposable 
(respectively, A -decomposable). 
3) If ( )1T X∈B  is SA -spectral (respectively, 
A -spectral), then 2T  is not SA -spectral 
(respectively, A -spectral). 
 

4. CONCLUSIONS 
     
 We will underline the relevance, 
importance and necessity of studying the SA -
scalar (respectively, SA -decomposable or SA -
spectral) operators, showing the consistence of 
this class, in the sense of how many and how 
substantial its subfamilies are.  These operators 
are natural generalizations of the notions of A -
scalar, A -decomposable and A -spectral 

operators studied in [8] and appear, in general, as 
restrictions or quotients of the last one. 
 We demonstrated some of their 
properties, leaving the challenge to proof and 
generalize many others. 
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